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It is shown that any orthocomplemented poset P of finite width admits a chain 
partition of cardinality 2L 2 width(P)J which is symmetrical with respect to the 
orthocomplement. This cardinality is the best possible. 

1. I N T R O D U C T I O N  

Let (P, < )  be a poset. A set of pairwise comparable or pairwise incompa- 
rable elements of P is called a chain or an antichain, respectively. A chain 
partition of P is a set { C~ . . . . .  Ck} of subsets of P, each of which is a chain, 
such that the union ok=l Ci = P. Since each chain intersects each antichain 
in at most one element, there must be at least as many chains in any chain 
partition as there are elements in an antichain. A classic result of combinatorial 
order theory [See Dilworth (1950) and Mirsky (1971); for some applications 
also see Kaldewaij (1987), Larman et  al. (1994), and Pach and T6r6csik 
(1994)] is as follows: 

Theorem (Dilworth, 1950). The minimum cardinality of a chain partition 
of P equals the maximum cardinality of an antichain in P, 

This common cardinality is called the width of P. In the following we 
always assume the width of the poset to be finite. 

An orthocomplemented poset is a poset (P, < )  together with a self- 
mapping -:  P -o P which is an antisymmetry (2 < y r y < x), an involution 
(x = x), and an orthocomplement (-'3x, y: x < y ^ X < y). Normally 
(Flachsmeyer, 1988; Giuntini, 1991) also a global minimum 0 and a global 
maximum 1 are postulated (with the appropriate change of the orthocomple- 
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Fig. 1. Hasse diagrams of orthocomplemented posets. 

mentarity axiom); we exclude them for technical reasons without loss of 
generality. In the following all Hasse diagrams of examples are drawn in 
such a way that the orthocomplement is given by a reflection along a horizontal 
line (Fig. 1). 

Although the orthocomplement is a symmetry of the poset, it is generally 
not possible to find a minimum cardinality chain decomposition which is 
symmetric with respect to the orthocomplement, for the orthocomplement 
maps chains on disjoint chains, so any symmetric chain decomposition must 
have even cardinality. But there are orthocomplemented posers of odd width 
(Fig. 2, with chains of a Dilworth-decomposition marked). 

Orthocomplemented posets constructed as in Fig. 3 show that 2L 2 
width(P)J chains may be necessary for a symmetric chain partition of P if 
width(P) -= 0 mod 3. For width(P) = - 1 or 1 rood 3, one of the L~ width(P),J 
components of this poset has to be replaced by one or two copies of the 
poset consisting of two complementary (incomparable) elements to reach this 
bound. It is the aim of this paper to show that this number is also sufficient. 

Theorem. Each orthocomplemented poset admits a symmetric chain 
partition with at most 2L3 width(P)] chains. 

Adding 0 and 1 turns these examples into orthomodular lattices. 

Fig. 2. Orthocomplemented posets of odd width. 

Fig. 3. The extremal orthocomplemented poset. 
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2. T H E  S TR UC TURE OF MAXIMUM CARDINALITY 
ANTICHAINS 

Each inclusion-maximal antichain X decomposes the poset P in a lower 
part L(X) := {p ~ P ip  <- x for some x ~ X} and an upper part U(X) "= 
{p ~ PIx  <- p for some x ~ X}, with L(X) U U(X) = P, L(X) N U(X) = 
X. This defines a partial order ~ *  on the inclusion-maximal antichains by 
Xl --* X2 iff XI C_ L(X2). If we restrict this to the set ~ ( P )  of maximum- 
cardinality antichains of P, it becomes a lattice. For, if XI, X2 ~ A/[~ are 
maximum-cardinality antichains, then X~ U Xz is a height-2 poset, so X~ U 
X2 = inf(X1, X2) U sup(Xl, X2), where inf(Xj, X2) and sup(Xl, X2) denote the 
sets of minimal and maximal elements of Xi U X2, respectively. These sets 
are antichains, so they are at most of cardinality I X~ I = I X2 I, and since X~ 
N X2 = inf(Xl, X2) N sup(X1, X2), they must both be maximum-cardinality 
antichains. The orthocomplement induces an involutive antisymmetry of the 
lattice, which is not an orthocomplement of the lattice. 

We are especially interested in those maximum-cardinality antichains A 
:l/t with A <-* A; we call them lower antichains. For each antichain X 

J[/[ the infimum syminf(X) := inf(X, ~ is a lower antichain, and for each x 
X at least one of x, ~ is contained in syminf(X). Each lower antichain A 

decomposes the poset into the outer parts L_(A) U L(A) = L(A) U U(A) and 
the middle part L(A) N L(A) = U(A) N L(A). If A E ~ is a lower antichain 
and X ~ J[~ is an antichain that is not contained in L(A) U L(A) (so there 
are x e X, a~, a2 ~ A with al < x < a2), then there is a lower antichain 

I 

coy(A, X) := syminf(inf(A, sup(X, A))) such that A <--* coy(A, X) and X C 
L(cov(A, X)) U L(cov(A, X)). 

3. PARTIAL CHAIN D E C O M P O S I T I O N S  

Let P be a poset of width w. Let ~ denote the family of those w-tuples 
of nonempty chains (Ct . . . . .  Cw) for which U}%~ Ci is a lower order ideal 
of P and that have the property that for each transversal {tl . . . . .  tw} C_ P, 
ti ~ Ci, there is a lower antichain {a~ . . . . .  ai} E d[/t, ai ~ Ci, such that t i 
- ai (transversal covering property). This family is not empty; if A E M~ is 
a lower antichain, then any Dilworth-decomposition of L(A) belongs to c~. 

This family is ordered by componentwise inclusion, and each chain in 
it possesses an upper bound. It follows by Zorn's Lemma that q~ contains a 
maximal element (Cf . . . . .  C*), which we keep fixed. This decomposes 
some lower order ideal L* := U}'21 C~. For each lower antichain A ~ ~ ,  A 
C L* this induces a special Dilworth-decomposition C~(A) U ". .  U Cw(A) 
of L(A) for which Ci(A) C_ C~. By the transversal covering property we may 
select a <--*-chain s~ of lower antichains contained in L* such that C* = 
UA~,~ Ci(A). 
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Suppose now that there is some maximum-cardinality antichain X e &t 
such that X ~ L* U L --~. For each A c ~ the set c.._ov(A, X) fq (X U )0 is 
one of the finitely many nonempty subsets of (X U X), so there is a subchain 
~ub  C ,.~ with C~ = UA~a~b Ci(A) and coy(A, X) A (X U X) is constant 
forA e ~ub. Then ~/x "= {coy(A, J01A e ~ub} is again a -<*-chain, and 
each element of ~ x  defines a Dilworth-decomposition Cl(cov(A, X)) U . . .  
U Cw(COv(A, X)) which may be chosen such that Ci(A) C_ Ci(cov(A, X')) N 
L* C 6'/*. This implies the existence of an element (Cf* . . . . .  C**) E 
with C~ C C~* and Uw=l CF* _~ L* U UA ~a~b Coy(A, X) 3 L*, a contradiction 
to the maximality of (C_3 . . . . .  Cw*). So each maximum-cardinality antichain 
is contained in L* U L*. 

4. P R O O F  OF THE T H E O R E M  

The theorem is proved by induction on the width. It is certainly true 
for width 0, 1, 2, since only the empty poset is an orthocomplemented poset 
of width at most 1, which admits a symmetrical partition in 0 chains, and 
any orthocomplemented poset of width 2 consists of two complementary 
chains, so it is symmetrically partitioned in 2 chains. (At this point including 
0 and 1 would cause exceptional configurations.) 

Let now a poset P of width w -> 3 be given. We take a maximum partial 
chain decomposition (C~ . . . . .  C*) as described before, together with the 
generating -<*-chain of lower antichains ~ .  

We define for each of the lower antichains A c ~ a bipartite graph with 
vertexset { 1 . . . . .  w} U {1 . . . . .  w} and edgeset E(A) := {(i,])lmax(Ci(A)) -< 
min(Ci (A))}. Since the lower antichains are of maximum cardinality, we have 
for each subset S C { 1 . . . . .  w} 

I{ l{s, E(A),s ~ S}[---ISl 

i.e., the graph satisfies HaWs condition (Mirsky, 1971). ForAl C A2 we have 
E(A2) C E(AO, so {E(A)[A ~ ~}  is a decreasing sequence of finite sets; 
therefore the limit fqa ~ E(A) still satisfies Hall's condition. By the matching 
theorem we find a permutation I~ of { 1 . . . . .  w } such that { i, I~(i) } E E(A) 
for all i, A. So C~ U C*,) is a chain for each i, which gives a Dilworth- 
decomposition of L* U L*. 

Consider now the poset P '  := P\(Cf  U C'm). This is a poset of width 
w - 1, since any antichain of cardinality w in P is already contained in L* 
U L*, so it must intersect each chain of this Dilworth-decomposition in one 
element. We can now find a Dilworth-decomposition of P'  = D~ U - ' -  U 
Dw ~ which__we may select in such a way that either__ Cl C DL__and C ~ )  C 
D2 or even Cl U C~o ) C_ Dt. Then P" := P\(D1 t_J DI U D2 U D2) C P'\(DI 
U D2) is an orthocomplemented poset of width at most w - 3. So we have 
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_ _  m 

found a partition P = P" U D1 U D1 U D2 U D 2 in an orthocomplemented 
poset of  width w - 3 and a symmetrical set of  four chains, which completes 
the inductive proof. 

R E F E R E N C E S  

Dilworth, R. E (1950). A decomposition theorem for partially ordered sets, Annals of Mathemat- 
ics, 51, 161-166. 

Flachsmeyer, J. (1988). Orthoposets as substructures of Boolean algebras, in Topology and 
Measure V (Binz/GDR 1987), Wiss. Beitr. Ernst-Moritz-Arudt-Universit[it Greifswald, 
pp. 89-94. 

Giuntini, R. ( 1991 ). Quantum Logic and Hidden Variables, BI-Wissenschaftsverlag, Mannheim. 
Kaldewaij, A. (1987). Some algorithms based on the dual of Dilworth's theorem, Science of 

Computer Programming, 9, 85-89. 
Larman, D., Matougek, J., Pach, J., and T6r~csik, J. (1994). A Ramsey-type result for convex 

sets, Bulletin of the London Mathematical Soc. 26, 132-136. 
Mirsky, L. (197l). Transversal Theory, Academic Press, New York. 
Pach, J., and T ~r3csik, J. (1994). Some geometric applications of Dilworth's theorem, Discrete 

and Computational Geometry, 12, 1-7. 


